CON4EI: CONsortium for in vitro Eye Irritation testing strategy - EpiOcular™ time-to-toxicity (EpiOcular ET-50) protocols for hazard identification and labelling of eye irritating chemicals.
نویسندگان
چکیده
Assessment of acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for eye irritation assessment for all drivers of classification. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different alternative methods. Here, the results obtained with reconstructed human cornea-like epithelium (RhCE) EpiOcular™ in the EpiOcular time-to-toxicity Tests (Neat and Dilution ET-50 protocols) are presented. The primary aim of this study was to evaluate whether test methods can discriminate chemicals not requiring classification for serious eye damage/eye irritancy (No Category) from chemicals requiring classification and labelling for Category 1 and Category 2. In addition, the predictive capacity in terms of in vivo drivers of classification was investigated. The chemicals were tested in two independent runs by MatTek In Vitro Life Science Laboratories. Results of this study demonstrate very high specificity of both test protocols. With the existing prediction models described in the SOPs, the specificity of the Neat and Dilution method was 87% and 100%, respectively. The Dilution method was able to correctly predicting 66% of GHS Cat 2 chemicals, however, prediction of GHS Cat 1 chemicals was only 47%-55% using the current protocols. In order to achieve optimal prediction for all three classes, a testing strategy was developed which combines the most predictive time-points of both protocols and for tests liquids and solids separately. Using this new testing strategy, the sensitivity for predicting GHS Cat 1 and GHS Cat 2 chemicals was 73% and 64%, respectively and the very high specificity of 97% was maintained. None of the Cat 1 chemicals was underpredicted as GHS No Category. Further combination of the EpiOcular time-to-toxicity protocols with other validated in vitro systems evaluated in this project, should enable significant reduction and even possible replacement of the animal tests for the final assessment of the irritation potential in all of the GHS classes.
منابع مشابه
Development of the EpiOcular(TM) eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation.
The recently implemented 7th Amendment to the EU Cosmetics Directive and the EU REACH legislation have heightened the need for in vitro ocular test methods. To address this need, the EpiOcular(TM) eye irritation test (EpiOcular-EIT), which utilises the normal (non-transformed) human cell-based EpiOcular tissue model, has been developed. The EpiOcular-EIT prediction model is based on an initial ...
متن کاملEye irritation hazard of chemicals and formulations assessed by methods in vitro.
BACKGROUND The aim of this study was to compare human and animal skin irritation data with results of selected in vitro methods, including HET-CAM test, Neutral Red Release Assay, Neutral Red Uptake Assay and EpiOcular eye irritation test and with already existing data of eye irritation obtained from animal experiments. METHODS Chemicals employed in previous skin irritation validation studies...
متن کاملEye Irritation Test (EIT) for Hazard Identification of Eye Irritating Chemicals using Reconstructed Human Cornea-like Epithelial (RhCE) Tissue Model.
To comply with the Seventh Amendment to the EU Cosmetics Directive and EU REACH legislation, validated non-animal alternative methods for reliable and accurate assessment of ocular toxicity in man are needed. To address this need, we have developed an eye irritation test (EIT) which utilizes a three dimensional reconstructed human cornea-like epithelial (RhCE) tissue model that is based on norm...
متن کاملUse of In Vitro Data and (Q)SARs to Classify Eye Irritating Chemicals in the EU – Experience at the BfR
Today, the Draize rabbit eye test, which was introduced over sixty years ago (Draize et al., 1944), still forms the basis of internationally agreed protocols for eye irritation/corrosion testing (European Commission, 2004; OECD, 2002). The success of this test is based on its obvious biological relevance and the fact that multiple aspects of ocular irritation/corrosion, i.e. different target si...
متن کاملN-chlorotaurine and its analogues N,N-dichloro-2,2-dimethyltaurine and N-monochloro-2,2-dimethyltaurine are safe and effective bactericidal agents in ex vivo corneal infection models.
PURPOSE N-chlorotaurine (NCT) and its analogues N-monochloro-2,2-dimethyltaurine (NVC-612) and N-dichloro-2,2-dimethyltaurine (NVC-422) are new anti-infectives for topical treatment for conjunctivitis. The aim of this study was to show that these compounds are safe in an EpiOcular model and effective in corneas infected ex vivo. METHODS Corneal buttons were excised from porcine eyes. In 183 o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology in vitro : an international journal published in association with BIBRA
دوره شماره
صفحات -
تاریخ انتشار 2017